研究兴趣 实验室成员 研究成果 承担教学 代表性论文
研究兴趣
上海交通大学植物发育生物学研究室(Laboratory of Plant Developmental Biology)于2004年8月15日成立。实验室主要围绕以下三个研究领域开展工作:
1)水稻花序和花器官形态建成的分子调控机理研究:
水稻具有特殊的花序和花器官结构,决定粮食产量,利用遗传学、生物化学、细胞生物学等手段研究MADS-box等转录因子参与水稻花序和花器官形态建成。
2)水稻雄性生殖发育机理研究:
植物雄性生殖器官花药发育以及雄性生殖细胞花粉的形成对于植物孢子体和配子体世代交替、遗传和变异等非常重要,涉及细胞分裂、分化、细胞和细胞之间交流、细胞死亡以及减数分裂、有丝分裂等重要生物学过程。我们利用系统生物学(基因组、蛋白组、代谢组等)、遗传学、细胞生物学、生物化学、结构生物学等手段研究控制水稻生殖发育的细胞和细胞之间通讯、细胞程序性死亡、脂类代谢等重要分子机制。
3)转基因生物分子特征研究:
利用系统生物学手段研究转基因生物在基因组、转录组、蛋白组、代谢组变化规律,建立转基因生物分子特征检测监测新方法,制订相关技术标准。
实验室成员
实验室有教授2人(张大兵、袁政)、研究员1人(梁婉琪)、外聘专家(全胜)、副教授2人(王灿华、杨立桃)、副研究员2人(许杰、石建新)、助理研究员1人(余婧)、农艺师2人(罗治婧、陈明姣)、技术员6人(瞿国润、陈自波、杨卉、汪洁、程芳、韦娇君)、管理人员2人(陈桂花、杨素珍)。
研究成果
近年来,实验室承担了国家和上海市多项重大重点课题,建立了植物发育研究体系和技术平台、国家转基因生物分子特征验证测试中心、上海市转基因生物科普教育基地等。
分离鉴定了多个控制水稻花序和花器官发育以及花粉形成等重要农艺性状相关的基因,阐明了花序和花分生组织决定、绒毡层细胞程序性死亡、生殖细胞和营养细胞相互作用的机制,建立了多种转基因生物分子特征分析方法。在Developmental Cell、PNAS、Nature Communications、Plant Cell、Plant Physiology、Nuclear Acid Research、Cell Research、Analytical Chemistry等发表90多篇研究论文。获授权专利14项;制定国家ISO技术标准4项,制定国家标准20余项。2004年和2012年获得上海市科技进步一等奖; 2006年获得明治乳业生命科学奖优秀奖(张大兵)、2012年获上海市自然科学牡丹奖(张大兵)、上海市科技启明星(张大兵、杨立桃)。有多名研究生获得上海市优秀博士论文(李晖,2012年)、国家和上海市优秀博士、硕士研究生奖学金。
承担教学
承担主讲的本科生课程有:细胞生物学(双语)、生物化学D、生物化学F、植物生物技术(双语)、动物生物技术、生物安全导论(双语)、生物学导论(双语)。参与本科生课程有:生化分析原理和方法(双语)、遗传学(双语、致远学院)、发育与再生生物学(双语、致远学院)等。参与的本科生实验课程有:生物化学实验、生物技术综合实验、生物学导论实验课等。
承担主讲的研究生课程有:细胞发育生物学(双语)、生物安全(双语)。参与的研究生课程有:生物化学技术原理与应用(双语)。
代表性论文
1.Niu NN, Liang WQ, Yang XJ, Jin WL, Wilson ZA, Hu JP, Zhang DB*. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications. DOI: 10.1038/ncomms2396 (2013).[full text]
2.Zhang H, Xu C, He Y, Zong J, Yang XJ, Si HM, Sun ZX, Hu JP, Liang WQ, Zhang DB*. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. PNAS. 110(1) (2013), 76-81[full text].
3.Tan HX, Liang WQ, Hu, JP Zhang DB*. MICROSPORE AND TAPETUM REGULATOR 1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Developmental Cell. 22(6) (2012), 1127-1137[full text].
4.Wang CM, Marshall A, Zhang DB, Wilson ZA*, ANAP: an integrated knowledge base for Arabidopsis protein interaction network analysis. Plant Physiology. 158(4) (2012), 1523-1533[full text].
5.Li W, Cui X, Meng ZL, Huang X, Xie Q, Wu H, Jin HL, Zhang DB, Liang WQ*, Transcriptional regulation of Arabidopsis MIR168a and ARGONAUTE1 homeostasis in ABA and abiotic stress responses. Plant Physiology. 158(3) (2012), 1279-1292[full text].
6.Chen WW, Yu XH, Zhang K, Shi JX, Schreiber L, Shanklin J, Zhang DB*, Male Sterile 2 encodes a plastid-localized fatty acyl ACP reductase required for pollen exine development in Arabidopsis thaliana. Plant Physiology. 157(2) (2011), 842-853[full text].
7.Li HF, Liang WQ, Hu Y, Zhu L, Yin CS, Xu J, Dreni L, Kater MM, Zhang DB*, Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell. 23(7) (2011), 2536-2552[full text].
8.Shi J, Tan HX, Yu XH, Liu YY, Liang WQ, Ranathunge K, Franke RB, Schreiber L, Wang YJ, Kai GY, Shanklin J, Ma H, Zhang DB*, Defective Pollen Wall (DPW) is required for anther and microspore development in rice and encodes a fatty acyl ACP reductase. The Plant Cell. 23(6) (2011), 2225-2246[full text].
9.Li H, Yuan Z, Vizcay-Barrena G, Yang CY, Liang WQ, Zong J, Wilson Z, Zhang DB*. PERSISTENT TAPETAL CELL 1 (PTC1) encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physioloy. 156(2) (2011), 615-630[full text].
10.Li HF, Liang WQ, Yin CS, Zhu L, and Zhang DB*. Genetic interaction of OsMADS3, DROOPING LEAF and OsMADS13 in specifying rice floral organs identities and meristem determinacy. Plant Physioloy. 156(1) (2011), 263-247[full text].
11.Wang CM and Zhang DB*. A novel compression tool for efficient storage of genome resequencing data. Nucleic Acids Research. 39(7) (2011), e45[full text].
12.Hu LF, Liang WQ, Yin CS, Cui X, Zong J, Wang X, Hu JP and Zhang DB*. Rice MADS3 regulates ROS homeostasis during late anther development. The Plant Cell. 23(2) (2011), 515-533[full text].
13.Zhang Z, Zhang Y, Tan HX,Wang Y, Li G, Liang WQ, Yuan Z, Hu JP, Ren HY, and Zhang DB*. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. The Plant Cell. 23(2) (2011), 681-700[full text].
14.Xu J, Yang CY, Yuan Z, Zhang DS, Gondwe MY, Ding ZW, Liang WQ, Zhang DB*, and Wilson ZA. Regulatory network of ABORTED MICROSPORES (AMS) required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant Cell. 22(1) (2010), 91-107[full text].
15.Wang CM, Xu J, Zhang DS, Wilson ZA, and Zhang DB*. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data. BMC Bioinformatics. 11 (2010), 81[full text].
16.Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao YW, Liang WQ, and Zhang DB*. CYP704B2 catalyzing the ω-hydroxylation of fatty acids is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell. 22(1) (2010), 173-190[full text].
17.Li HF, Liang WQ, Jia RD, Yin CS, Zong J, Kong HZ, and Zhang DB*. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research. 20(3) (2010), 299-313[full text].
18.Zhang H, Liang WQ, Yang XJ, Luo X, Jiang N, Ma H, and Zhang DB*. Carbon Starved Anther (CSA) encoding a MYB domain protein regulates sugar partitioning required for rice pollen development. The Plant Cell. 22(3) (2010), 672-689[full text].
19.Zhang DS, Liang WQ, Yin C, Zong J, Gu F, and Zhang DB*. OsC6, encoding a lipid transfer protein (LTP), is required for postmeiotic anther development in rice. Plant Physiology. 154(1) (2010), 149-162[full text].
20.Gao XC, Liang WQ, Yin CS, Ji SM, Wang HM, Su X, Guo CC, Kong HZ, Xue HW, Zhang DB*. The SEPALLATA-like geneOsMADS34 is required for rice inflorescence and spikelet. Plant Physiology. 153(2) (2010), 728-740[full text].
21.Liu DE, Shen J, Yang LT, Zhang DB*. Evaluation of the impacts of different nuclear DNA content in the hull, endosperm, and embryo of rice seeds on GM rice quantification. Journal of Agriculture Food Chemistry. 58(8) (2010), 4582-4587[full text].
22.Wang C, Jiang LX, Rao J, Liu YN, Yang LT, Zhang DB*. Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR. Journal of Agriculture Food Chemistry. 58(22) (2010), 11543-11547[full text].
23.Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, and Zhang DB*. RETARDED PALEA1 (REP1) controls palea development and floral zygomorphy in rice. Plant Physiology. 149(1) (2009), 235-244[full text].
24.Zhang DB*, and Wilson ZA. Stamen specification and anther development in rice. Chinese Science Bulletin. 54(14) (2009), 2342-2353[full text].
25.Wilson ZA*, and Zhang DB. From Arabidopsis to rice, pathways in pollen development. Journal of Experimental Botany. 60(5) (2009), 1479-1492[full text].
26.Jiang LX, Yang LT, Zhang HB, Guo JC, Marco M, Van den EG, and Zhang DB*. International collaborative study of the endogenous reference gene, Sucrose Phosphate Synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. Journal of Agriculture Food Chemistry. 57(9) (2009),3525-3532[full text].
27.Yang LT, Zhang HB, Guo JC, Pan LW, and Zhang DB*. International collaborative study for the endogenous reference gene, LAT52, used for qualitative and quantitative analysis of genetically modified tomato. Journal of Agriculture Food Chemistry. 56(10) (2008), 3438-3443[full text].
28.Dong W, Yang LT, Shen KL, Kim BH, Kleter GA, Marvin HJP, Guo R, Liang WQ, and Zhang DB*. GMDD, a database of GMO detection methods. BMC Bioinformatics. 9 (2008), 260[full text].
29.Zhang DS, Liang WQ, Yuan Z, Lia N, Shi J, Wang J , Liu YM, Yu WJ, and Zhang DB*. Tapetum Degeneration Retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Molecular Plant. 1(4) (2008), 599-610[full text].
30.Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, and Zhang DB*. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. The Plant Cell. 18(11) (2006), 2999-3014[full text].
31.Chu HW, Qian Q, Liang WQ, Yin CS, Tan HX, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, and Zhang DB*. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiology. 142(3) (2006), 1039-1052[full text].
32.Li XX, Duan XP, Jiang HX, Sun YJ, Tang YP, Yuan Z, Guo JK, Liang WQ, Chen L, Wang J, Ma H, Yin JY, and Zhang DB*. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology. 141(4) (2006), 1167-1184[full text].
33.Jiang DH, Yin CS, Yu AP, Zhou XF, Liang WQ, Yuan Z, Xu Y, Yu QB, Wen TQ, and Zhang DB*. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Research. 16(5) (2006), 507-518[full text].
34.Yang LT, Pan AH, Jia JW, Ding JY, Chen JX, Huang C, Zhang CM, and Zhang DB*. Validation of a tomato specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. Journal of Agriculture Food Chemistry. 53(2) (2005), 183-190[full text].
35.Ding JY, Jia JW, Yang LT, Wen HB, Zhang CM, Liu WX, and Zhang DB*. Validation of a rice specific gene, Sucrose Phosphate Synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Journal of Agriculture Food Chemistry. 52(11) (2004), 3372-3377[full text].
36.Huang YH, Liang WQ, Pan AH, Zhou ZA,Cheng H, Chen JX, and Zhang DB*. Production of FaeG, the major subunit of K88 fimbriae, in transgenic tobacco plants and its immunogenicity in mice. Infection and Immunity. 71(9) (2003), 5436-5439[full text].
37.Zhang YL, Zhang DB*, Li WQ, Chen JQ, Peng YF, and Cao W. A novel real-time quantitative PCR method using attached universal template probe. Nucleic Acids Research. 31(20) (2003), e123[full text].
|