内部访问登录界面
登录密码:
     
学术活动
当前位置:首页 >> 学术活动
学术报告-Sixue Chen, Qiang Cai, Cheng Chen
发表时间:2019-11-08 阅读次数:1615次

报告人:  Sixue Chen

Professor of Biology

Director of Proteomics and Mass Spectrometry

Cancer and Genetics Research Complex

University of Florida (UF)

Email: schen@ufl.edu

报告题目Guard Cell ‘Omics revealed MPK4 Complexes and CO2 Response

报告时间:2019年11月11日上午09:00

报告地点:生命科学技术学院树华多功能厅

  人:张大兵

报告人研究背景:

Human population is expected to reach 9 billion by 2050, and global crop productivity needs to increase by 70% to feed the growing population. Unfortunately, pathogen infection and other adverse environmental conditions have posed grand challenges to crop yield and food security. Stomatal pores are major entry points of bacteria pathogens. How stomatal guard cells respond to pathogen invasion and other environmental factors (e.g., rising CO2 levels) is an important and interesting question. Mitogen activated protein kinase 4 (MPK4) is a multifunctional kinase that regulates various signaling events in plant defense, growth, light response and cytokinesis. We discovered that MPK4 is highly abundant in guard cells. How it plays a role in stomatal immunity is not known. Here we introduce an experimental system that combines genetic engineering of kinase activity and quantitative proteomics to rapidly study the signaling networks of MPK4. Proteomics analysis revealed that MPK4 activation affects multiple pathways (e.g., metabolism, redox regulation, jasmonic acid biosynthesis and stress responses). Furthermore, MPK4 activation also increased protein phosphorylation in the phosphoproteome, from which putative MPK4 substrates were identified. Using protein kinase assay, we validated that a transcription factor and a regulatory protein were indeed phosphorylated by MPK4. We demonstrated the utility of proteomics and phosphoproteomics in elucidating kinase dynamics and and identification of downstream substrates. As CO2 levels affect stomatal immunity and stomatal movement, we studied CO2 signaling using hyphenated metabolomics technologies. A new signaling pathway involving jasmonic acid was discovered. Future directions in signal crosstalk and data integration will be discussed.

报告人信息:

Professor Sixue Chen completed his Ph.D. in Shanghai, China and postdoctoral studies in Germany, Denmark, and University of Pennsylvania, USA. He is the Colonel Allen R. and Margret G. Crow Professor in Department of Biology, and Director of Proteomics and Mass Spectrometry at Interdisciplinary Center for Biotechnology Research of University of Florida, USA. Dr. Chen’s areas of expertise fall in Biochemistry, Plant Metabolism, Functional Genomics, Proteomics, Metabolomics, and Mass Spectrometry. He learned mass spectrometry when he was collaborating with a senior chemist at the Danish Royal Veterinary and Agricultural University 20 years ago. Dr. Chen carried out a lot of small molecule work at that time. Since joining University of Pennsylvania in 2001, he has worked on many different projects using proteomics and mass spectrometry. Dr. Chen has accumulated experience with different separation and fractionation technologies, different HPLC instruments including the nanoflow ultra performance LC, as well as mass spectrometers. During his tenure as the Proteomics Facility Director at the Danforth Center in Missouri, USA, Dr. Chen has developed a high throughput protein identification technology. Dr. Chen has successfully administered projects, trained students and scientists, collaborated with other researchers, and produced more than 200 peer-reviewed publications. At University of Florida, Dr. Chen has established three major research projects: plant guard cell hormone and CO2 signaling, stomatal innate immunity and glucosinolate metabolism. These projects have been funded by the US National Science Foundation, Department of Agriculture and National Institute of Health. Based on findings from large-scale “omics” studies, many novel, testable hypotheses have been derived. Another major component of Dr. Chen’s research program has been hypothesis driven and testing, i.e., characterizing molecular, biochemical and physiological functions of specific genes and proteins in plant interaction with the environment. The integration of hypothesis generation and hypothesis driven research will ultimately lead to a holistic view of cellular molecular networks that connect environmental factors to physiological and phenotypic output. Dr. Chen serves as Associate Editor of Metabolomics, Associate Editor of Frontiers in Plant Proteomics, Editorial Advisory Board Member of Journal of Proteome Research, Editorial Board Member of Journal of Proteomics, and Review Editor of Frontiers in Plant Metabolism and Chemodiversity.

近五年代表性论文:

1. Zhang, T., Chhajed, S., Schneider, J.D., Feng, G., Silveira, J.A., Song, W., Chen, S. (2019) Proteomic characterization of MPK4 signaling network and putative substrates. Plant Molecular Biology (doi.org/10.1007/s11103-019-00908-9)

2.    Geng, S., Yu, B., Zhu, N., Dufresne, C., Chen, S. (2017) Metabolomics and proteomics of Brassica napus guard cells in response to low CO2. Frontiers in Molecular Biosciences-Metabolomics 4, 51.

3. Libault, M., Chen, S. (2016) Plant single cell type systems biology. Frontiers in Plant Science 7:35.

4. Geng, S., Misra, B.B., de Armas, E., Huhman, D.V., Alborn, H.T., Sumner, L.W., 5. Chen, S. (2016) Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics. The Plant Journal 88(6), 947-962. doi: 10.1111/tpj.13296.

5. Parker, J., Balmant, K., Zhu, F., Zhu, N., Chen, S. (2015) cysTMTRAQ - An integrated proteomics method for identification of thiol-based redox proteins. Molecular and Cellular Proteomics 14, 237-242.

6. Misra, B.B., Assmann, S.M., Chen, S. (2014) Plant single cell and single cell-type metabolomics. Trends in Plant Science 19, 637-646

 

报告人:  蔡强

教授,博导

武汉大学,生命科学学院

杂交水稻国家重点实验室

Email: Qiang.cai@whu.edu.cn

报告题目Small RNAs and extracellular vesicles: new mechanisms of cross-species communication

报告时间:2019年11月11日上午10:00

报告地点:生命科学技术学院树华多功能厅

  人:张大兵

报告人研究背景:

病原菌对植物的侵害严重影响粮食作物的产量。在病原菌侵染植物的过程中,病原菌和植物间细胞通信涉及到跨细胞边界的物质运输与交换,这对于调节植物抗病性和病原菌毒性两方面都起着重要的作用。先前的研究主要集中在蛋白质的运输与交换上,比如来源于病原菌的效应分子进入植物细胞调节植物的抗病反应等。最近研究发现,可以移动的小分子RNA(small RNA,sRNA)在宿主和病原菌之间双向传递,跨界诱导基因沉默,参与调节宿主免疫反应和病原菌致病性。而宿主中天然的内源sRNA是否通过跨界基因沉默的方式起到抗病作用,以及sRNA的跨界转运机制不是很清楚。我们的研究表明,在灰霉菌侵染拟南芥的过程中,植物细胞向胞外分泌一种纳米级脂质小囊泡(外泌体,Exosomes)将其内源sRNA运输至真菌细胞中,靶向切割病原菌毒性基因表达的mRNA,从而达到防御真菌入侵的作用。该研究首次在植物-病原菌互作系统中发现了外泌体介导的跨物种基因沉默作为宿主抗病免疫的新机制,同时也对植物病虫害防治提出了新的思路和设想。

报告人信息:

蔡强,博士,武汉大学生命科学学院教授,博士生导师。 2014年9月在张大兵教师指导下获上海交通大学发育生物学博士学位。2014年12月-2019年8月期间在美国加州大学河滨分校金海翎教授实验室从事博士后研究。现在杂交水稻国家重点实验室(武汉大学)组建实验室,主要研究以下领域:1)Small RNA(sRNA)调控植物与病原菌的互作机制。我们以水稻和拟南芥为材料,通过基因组学,遗传学,分子和生物化学的方法来分析sRNA在植物与病原菌互作中的调控机制,尤其是sRNA的转运在这一过程的作用。2)细胞通讯在植物免疫和生长发育过程中的作用。Tetraspanins 是一类在进化中保守的跨膜蛋白,广泛存在于所有高等生物中,参与细胞间物质交换(外泌体介导),细胞识别,移动,粘连和融合。我们系统研究植物Tetraspanins及其“伙伴”蛋白在细胞通讯中的生物学功能,及其在植物免疫和发育中的作用。

近五年代表性论文:

发表的论文(*通讯作者)

1. Qiang Cai, Baoye He, and Hailing Jin. (2019). A safe ride in extracellular vesicles – small RNA trafficking between plant hosts and pathogens. Current Opinion in Plant Biology. 52:140-148.

2. Qiang Cai, Lulu Qiao, Ming Wang, Baoye He, Feng-Mao Lin, Jared Palmquist, Hsien-Da Huang, and Hailing Jin. (2018). Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 360(6393):1126-1129.

3. Qiang Cai, Baoye He, Karl-Heinz Kogel and Hailing Jin. (2018). Cross-kingdom RNA trafficking and environmental RNAi-nature’s blueprint for modern crop protection strategies. Current Opinion in Microbiology. 46:58-64.

4. Qiang Cai*, Zheng Yuan*, Mingjiao Chen, Changsong Yin, Zhijing Luo, Xiangxiang Zhao, Wanqi Liang, Jianping Hu & Dabing Zhang. (2014). Jasmonic acid regulates spikelet development in rice. Nature Communications. 5:3476.

5. Huanhuan Wang*, Liang Zhang*, Qiang Cai*, Wei Fan, Yun Hu, Ling Li, Zhenming Jin, Taotao Wang, Qianming Huang, Zhijing Luo, Mingjiao Chen, Dabing Zhang & Zheng Yuan. (2015). MADS32 interacts with B-function proteins and regulates rice flower development. Journal of Integrative Plant Biology. 57(5):504-13.

6. Yun Hu, Wanqi Liang, Changsong Yin, Xuelian Yang, Baozhe Ping, Anxue Li, Ru Jia, Mingjiao Chen, Zhijing Luo, Qiang Cai, Xiangxiang Zhao, Dabing Zhang & Zheng Yuan. (2015). Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. Molecular Plant. 8(9):1366-84.

 

报告人:   

长聘教轨副教授

上海交通大学,农业与生物学院

Email: cgchen@msu.edu

报告题目Mechanisms and Spatial Regulation of Chloroplast Division

报告时间:2019年11月11日上午11:00

报告地点:生命科学技术学院树华多功能厅

  人:张大兵

报告人研究背景:

叶绿体是植物进行光合作用的场所。植物在生长、发育过程中,叶绿体的数量需要随之增加以适应植物不断增长的物质、能量需求,并确保细胞分裂形成的子细胞都能继承相同数量的叶绿体。叶绿体数量的增加主要是通过叶绿体分裂实现的,由位于其中央部位的分裂装置以二元分裂的方式进行。该装置包含叶绿体内膜基质侧的FtsZ环、内质体分裂环和位于其外膜细胞质一侧的DRP5环、外质体分裂环。叶绿体的分裂起始于FtsZ环在分裂位点处的聚合和组装。长期以来,人们对于叶绿体分裂装置如何精确定位于叶绿体分裂位点,并保持动态变化的调控机理一直不是很清楚。我们研究发现,叶绿体分裂蛋白ARC3通过抑制非分裂位点处FtsZ环的聚合,使得该环及整个分裂装置只特异的在分裂位点处组装。此外,部分ARC3被招募至分裂位点处用以增加分裂装置的动态变化能力,进而可能促进了叶绿体的分裂。该研究揭示了叶绿体分裂定位的分子调控机理,对阐明原核生物的细胞分裂(主要由FtsZ蛋白介导)的调控机制亦有重要的启示意义。

报告人信息:

陈诚,博士,上海交通大学农业与生物学院长聘教轨副教授、课题组长(PI)。2012年博士毕业于中国农业大学植物生理学与生物化学国家重点实验室,导师为袁明教授。攻读博士期间赴美国加州大学戴维斯分校William J. Lucas教授实验室联合培养。2014年4月-2019年10月在美国密歇根州立大学Katherine W. Osteryoung教授实验室从事博士后研究工作,主要研究方向为植物叶绿体细胞器分裂调控的分子机制。2019年10月底回国组建实验室,未来将主要聚焦在以下研究领域:1)叶绿体分裂的分子机理。将以拟南芥、绿藻等为研究对象,揭示叶绿体分裂装置组装、定位及动态变化的调控机制。2)细胞器与细胞分裂过程相互协调的分子控制机理。将以叶绿体细胞器为研究对象,探究植物如何协调细胞分裂与细胞器分裂的分子机制。3)研究淀粉体等非绿色质体的发生、分裂和分化的调控机制。淀粉体是非绿色质体中的一种,主要负责在细胞内长期储存淀粉。淀粉体主要存在于植物的根,种子胚乳(例如大米、小麦和玉米),块茎(例如马铃薯)和块根(例如红薯和木薯)等。淀粉体等非绿色质体相关的研究工作不仅具有重要的科学意义,同时也具有重大的农业和经济价值。

近五年代表性论文:

发表的论文(*通讯作者)

1. Chen, C.*, Cao, L., Yang, Y., Porter, K. and Osteryoung, K.W.* (2019). ARC3 Activation by PARC6 Promotes FtsZ-Ring Remodeling at the Chloroplast Division Site. The Plant Cell 31: 862–885.

2. Chen, C., MacCready, J.S., Ducat, D.C. and Osteryoung, K.W.* (2018). The Molecular Machinery of Chloroplast Division. Plant Physiology 176(1), 138–151.

3. Zhang, M.#, Chen, C.#, Froehlich, J.E., Terbush, A.D. and Osteryoung, K.W. (2016). Roles of Arabidopsis PARC6 in Coordination of the Chloroplast Division Complex and Negative Regulation of FtsZ Assembly. Plant Physiology 170(1), 250–262. (#同等贡献)

| 网站管理 | 联系我们 | 添加收藏 | 设为首页 |

版权所有 © 上海交通大学植物发育生物研究室 技术支持:维程互联

网站访问量:
track internet traffic